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A mathematical model of strain of a dispersed-phase-polymer droplet in flow of a molten polymer blend
from a wide reservoir to a narrow one has been created with the use of the structural-continuum approach.
The system of differential equations obtained has numerically been solved by the Runge–Kutta method. The
model satisfactorily describes the actual processes of flow of molten polymer blends in the entrance zone of
a molding orifice: the values of the droplet strains are a function of the relation of the viscosities of the
starting components and their absolute values, the volume concentration of the dispersed phase, the inter-
phase tension, and the elasticity of the droplet. The adequacy of the model created has been confirmed by
comparison of the droplet strains calculated using the equations obtained and the theoretical conclusions
and experimental results.

The use of polymer blends is one efficient method of creating materials with a prescribed set of properties.
Polymer blends may be considered as specific colloidal systems whose properties are determined by the type of struc-
ture formation and the surface phenomena at the phase boundary [1]. Processing of molten blends offers a new method
of molding of ultrafine synthetic fibers (microfibers) of diameter from several fractions to tenths of a fraction of a mi-
crometer. This phenomenon has been called specific fiberization [2]. The empirical approach is dominant in investigat-
ing the processes of formation of a structure in polymer dispersions. Romankevich et al. have made an attempt to
describe the process of formation of microfibers in the matrix of the other polymer in the case of flow of a molten
binary mixture; the emphasis was on the strain of a polymer droplet in the channel of the molding orifice and after
the exit from it or in subsequent thermoorientational stretching [3, 4]. The mechanism of the phenomenon of specific
fiberization, whose essence is that the fiberization of one polymer in the mass of the other (matrix) polymer is carried
out in the field of tensile forces arising in transition from a wide reservoir to a narrow one, has been formulated and
experimentally confirmed in [2].

The present work seeks to create a mathematical model of strain of a droplet of the dispersed-phase compo-
nent in flow of a molten polymer blend in the entrance zone of a molding orifice.

To describe the processes occurring in dispersion flow one must know of numerous characteristics of the dis-
persion: the viscoelastic properties of the components, the volume concentration of the dispersed phase, the shape, size,
and interaction of particles, etc. It is possible to allow for these indices in detail within the framework of the structural
(microscopic) approach which has widely been used in investigating comparatively simple media, such as diluted sus-
pensions with simply shaped particles. The possibility of using the structural method in the rheology of dispersions is
limited by their diversity and complex morphology. The structural-continuum method proposed in [5, 6] combines the
phenomenological (macroscopic) and structural (microscopic) approaches and enables one to allow for all the funda-
mental propositions of the continuum mechanics (continuity of the medium and discontinuity of functions charac-
terizing its motion and state) and the distinctive features of the behavior of the dispersed phase. Thus, in the
structural-continuum model, each point of the dispersion is characterized by the density, velocity, and pressure (just as
in the classical mechanics) and by the so-called internal parameters, in addition. The latter can be scalars, vectors, and
tensors; their number and form are determined by the nature of the microstructure of the dispersion under study. In
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the case of diluted suspensions of deformable particles one introduces one internal parameter, i.e., the vector allowing
for the influence of the orientation, hydrodynamic interaction, and strain of suspended particles on the behavior of the
medium, into the rheological equation. The coordinates of a particle in the space described by the vector determine the
dependence of the rheological properties of the suspension on the particles’ orientation (anisotropy), whereas the modu-
lus of the vector determines the value of strain in the case of flow [7].

Objects and Methods of Investigation. To create the model of strain of droplets of the dispersed-phase poly-
mer in the other polymer we took the droplet to be an ellipsoid that changes its dimensions in the process of interac-
tion with the dispersion medium but in so doing retains its volume. The dispersion medium was modeled by a
Newtonian fluid with the aim of simplifying mathematical calculations and solving the equations obtained. The zone
of entry into the narrow reservoir from the wide one is shown in Fig. 1.

The system of equations describing the isothermal motion of a continuous medium consists of the equation of
uniaxial-tension flow, the flow-continuity equation, and the rheological equation of state of the fluid. The velocity field
resulting from the superposition of the longitudinal strain on the shear flow can be described as follows:

Vx = − u ⁄ 2x ,   Vy = − u ⁄ 2y ,   Vz = u ,   u = V ⁄ h . (1)

The rate tensor of uniaxial tension strain (dij) is determined as [8]

dij = 







u
0
0
   

0
− u ⁄ 2

0
   

0
0

− u ⁄ 2







 ; (2)

it is allowed that circulatory flow is absent.
The flow-continuity equation in the case of a constant density has the form

ui,i = 0 . (3)

The rheological state of the dispersion under study has been described by the equation obtained from the
viewpoint of the structural-continuum approach for diluted suspensions with ellipsoidal deformable particles [5]. This
equation contains one internal parameter — the vector ni related to the microstructural element — of a suspended de-
formable particle, depends on the character of flow of the medium, and may change in space and with time. Its direc-
tion coincides with the vector of the axis of symmetry of an ellipsoid, and its modulus coincides with the length of
the semiaxis of rotation a, i.e., ni = a. The rheological equation describing the anisotropic fluid has the form [5]

n
.
i = λ1ni + λ2dkmnknmni + λ3dijnj , (4)

where the value of n
.
i is taken at a corresponding point and at a corresponding instant of time.

Fig. 1. Diagrammatic representation of the zone of entry into the molding
orifice.
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In the equations used, "⋅" above the symbol denotes the total derivative with respect to time; the double sub-
scripts denote summation from 1 to 3 over the given subscript.

The quantities λ1, λ2, and λ3 characterize the rheological properties of the system. Equations for their deter-
mination have been obtained in [6]:
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The quantities a0, β0, a0
′ , β0

 ′, a0
′′, and β0

 ′′ have been determined in [9]. To solve Eq. (4) for the strain and
orientation of an ellipsoid (polymer droplet) in the flow we expand Eq. (4) in the coordinate axes x, y, and z:
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In the spherical coordinate system, the location of the vector ni may be determined as follows:

nx = a cos ϕ sin θ ,   ny = a sin ϕ sin θ ,   nz = a cos θ . (7)

Taking the derivatives of the left-hand and right-hand sides of Eqs. (7), equating the right-hand sides of the corre-
sponding equations (6) and (7), and carrying out the required transformations, we obtain the system of differential
equations

ϕ
.
 = 0 ;   θ

.
 = − 

3
4

 u λ3 sin (2θ) ;   a
.

a
 = λ1 + 

u
2

 (λ2a
2
 + λ3) (2 − 3 sin

2
 θ) . (8)

It represents a mathematical model (created for the first time) of strain of droplets of the dispersed-phase components
in flow of a molten polymer blend in the entrance zone of the molding orifice. The model enables us to determine the
strain and the orientation of droplets in the flow as functions of the rheological properties of the components of the
blend and the volume concentration of the dispersed phase.

Results and Their Discussion. For convenience of solution of the system of equations (8) we have passed to
dimensionless variables in the equation for determination of the strain rate from the formula q = a/b. The system of
equations (8) may be written in new variables as
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This system of differential equations was solved numerically by the Runge–Kutta method using a program specially
written in the Object Pascal language in the Delphi environment.

The adequacy of the model created was checked by comparison of the droplet strains calculated using the
equations obtained to experimental results. For this purpose we used the data of [10], where the influence of the com-
position of the blend and the relation of the viscosities of the components on the phenomenon of specific fiberization
was investigated with the example of polyoxymethylene/ethylene-vinyl acetate copolymer (POM/EVAC) blends. Using
the model, we calculated the strain and orientation of a POM droplet in the flow as it approached the entrance to the
molding orifice. The depth of descent of the droplet over the height of the entrance zone was determined from the
equation

h (t) = h0 (exp (ut) − 1) . (10)

The results obtained demonstrate that the strains q substantially depend on the orientation of the droplet in the
flow (Fig. 2). It is seen that polymer droplets are strained in the direction of flow when tensile stresses begin to be
generated in the reservoir. The value of q grows as the droplet approaches the entrance to the molding orifice. The
strain is maximum on the flow axis (θ = 0) and decreases with distance from the axis. The q values calculated using

Fig. 2. Strain of a dispersed-phase droplet vs. depth of descent and angle of
orientation θ (rad) for η ⁄ µ = 1: 0 (1), 0.2 (2); 0.4 (3); 0.7 (4).
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the model are in good agreement with the conclusions of [8], according to which the melt moves with acceleration in
transition from a wide reservoir to a narrow one: the velocity grows as the entrance is approached and has its maxi-
mum values on the axial line. Different degrees of strain of POM droplets in the flow, in addition to aggregation, are
one reason for the spread in the diameters of POM microfibers, which has been established experimentally [2, 10].

It is well known that the microstructure of extrudates of polymer blends is formed in flow and is deter-
mined by such microrheological processes as strain, disintegration, coalescence, and migration of droplets of the
dispersed-phase polymer. The degree of manifestation of one enumerated process or another largely depends on the
relation of the viscosities of the dispersed-phase polymer and the matrix (η ⁄ µ) [2, 10]. The calculations (carried
out using the model) of the strain of a POM droplet as a function of the relation of the POM and EVAC viscosi-
ties have shown that, for ηpom

 ⁄ µevac < 1, the quantity q grows as compared to the strain for ηpom
 ⁄ µevac ≥ 1 (Fig.

3). The latter is natural and has been confirmed experimentally. It has been established in [11] that when the vis-
cosities of the melts of the dispersed phase and the medium are equal, the deformable component experiences the
same strain as the continuous phase, but if η of the dispersed phase is lower than the viscosity of the medium it
is strained better. An increase in η ⁄ µ is accompanied by a poorer strain of the dispersed-phase component. The
data on the strain calculated using the model agree with these conclusions (Fig. 3). A comparison of experimental
results that reflect the character of structure-formation processes in extrudates of the POM/EVAC blends with
change in the viscosity relations [10] and the strain q of a POM droplet, calculated from the model, demonstrates
that the mathematical model developed describes the actual process of strain of a droplet of the dispersed-phase
polymer in the entrance zone (Tables 1 and 2). The increase (established experimentally) in the average diameter
of POM microfibers and the decrease in q for ηpom

 ⁄ µevac = 0.65 disagree with the calculated data and are incon-
sistent with theoretical conclusions [11]. This is attributable to the migration of droplets of a low-viscosity dis-
persed phase to the capillary walls, because of which the center of the flow is depleted and most of the dispersed
phase is strained at the periphery, where the q values are much lower than those on the flow axis.

The elasticity of a molten droplet of the dispersed-phase polymer in the model developed was allowed for in
terms of the elastic modulus G. The q values calculated from the model show that the theory proposed correctly de-
scribes the influence of the elasticity on the degree of strain of the dispersed phase: droplets with a higher elasticity
are strained to a lesser extent, i.e., they are more tension- and shear-resistant.

In addition to the relation of the viscosities of the blend components, their absolute values also make the de-
termining contribution to microrheological processes in flow of molten polymer blends. The latter is confirmed by the
results of calculations, using the model, of the strains of dispersed-phase droplets for the cases where η ⁄ µ = 1 (Table
3). The theory developed demonstrates that the lower the absolute values of the component viscosities, the larger the
strains of the components, e.g., for 0.5η ⁄ 0.5µ and h = 8 the strain is 102.9, whereas for 2η ⁄ 2µ it is only 9.4. How-
ever, the minimum values of the viscosities are bounded by the capacity of polymers for fiberization and by the en-
hancement of coalescence processes. Evidently, there are optimum values of the viscosities of the initial parameters for
which the strain will be maximum for η ⁄ µ = 1. Thus, selection of the absolute values of the viscosities of polymers

Fig. 3. Strain of a dispersed-phase droplet vs. depth of descent and viscosity
relation η ⁄ µ for θ = 0.4 rad: 0.65 (1); 0.85 (2); 1.05 (3); 4.14 (4); 10.77 (5).
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in the blend may be one method of control of structure formation with the aim of producing microfibers with diame-
ters smaller than tenths of a fraction of a micrometer.

It is well known that there is a competitive influence of the rheological properties of the polymers blended
and the composition of the blend on the microstructure of extrudates [12]. Calculations of the strains using the model
have shown a growth in q as the concentration of the dispersed-phase polymer increases from 4 to 16 vol. %. The
latter is in agreement with the Starita theory [13], according to which the degree of strain is in direct proportion to
the volume concentration of the dispersed phase. However, in practice, this conclusion is not necessarily confirmed for
polymer blends. In the case of realization of specific fiberization, an increase in the content of the fiberizing compo-
nent is accompanied by the growth in the average microfiber diameter [2, 10].

Recently, it has been shown theoretically and experimentally that one can control the type of structure in mul-
ticomponent polymer compositions, changing the interphase tension (γαβ) [14]. A decrease in γαβ leads to an improve-
ment of the strain of the dispersed-phase component. On the other hand, the capacity of a droplet for straining is
largely determined by its elasticity. On condition that the forces of internal elasticity and surface tension are equal, the
rheological constant λ1 (5) in the model created will have the form

TABLE 1. Experimental Diameters of Fibers

ηpom ⁄ ηevac dav dmin dmax

0.65 6.9 2.6 31.2
0.85 4.9 1.7 20.8
1.05 5.5 2.1 26.0
4.14 7.3 2.6 30.8
8.64 8.5 5.2 31.2

10.77 10.2 5.2 31.2

TABLE 2. Strains q of a Droplet of the Dispersed-Phase Polymer

ηpom ⁄ ηevac dav dmin dmax
θ, rad

0 0.4 0.7
0.65 22.5 2.3 97.3 249.1 76.9 11.2
0.85 37.6 4.3 184.0 207.8 64.9 10.1
1.05 31.6 3.1 134.0 138.7 48.1 7.0
4.14 20.7 2.4 96.3 112.5 19.7 3.8
8.64 16.5 2.3 97.3 103.4 14.3 2.0

10.77 12.5 2.3 34.4 57.9 9.5 1.3

TABLE 3. Influence of the Absolute Values of the Viscosities of the Starting Components on the Strain q (θ = 0.4 rad and
η ⁄ µ = 1)

h⋅10−3 2η ⁄ 2µ 1.5η ⁄ 1.5µ η ⁄ µ 0.75η ⁄ 0.75µ 0.5η ⁄ 0.5µ
2 1.2 1.5 1.8 4.9 13.2
4 3.1 4.4 7.1 31.2 61.1
8 9.4 24.5 48.1 79.2 102.9

TABLE 4. Strain of a Dispersed-Phase Droplet q as a Function of the Interphase Tension (θ = 0.4 rad and η ⁄ µ = 1)

h⋅10−3 γαβ

0.1 0.5 1.0 2.0 3.0

2 2.4 2.1 2.0 1.9 1.8

4 70.8 44.8 32.0 21.1 11.3

8 228.4 67.5 40.4 29.0 17.7
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The droplet strains calculated using the model as functions of the degree of interphase tension are given in
Table 4. The results demonstrate that the model created adequately describes the process of strain of a droplet of a
dispersed-phase polymer: a decrease in γαβ is accompanied by the growth in the strain. The calculated results are in
good agreement with experimental data on investigation of structure-formation processes in compatibilized polymer
blends. A decrease in the interphase tension in polypropylene/copolyamide (PP/CPA) blends due to the introduction of
compatibilizers contributes to the growth in the degree of dispersity and to the improvement of the fiberization of PP
in the CPA matrix [15].

Thus, we have created a mathematical model of strain of a droplet of a dispersed-phase polymer in the case
of flow of a molten polymer blend in the entrance zone of the molding orifice. The model enables us to calculate the
strains of the droplet in the flow and allows for the influence of the volume concentration and elasticity of the dis-
persed-phase polymer, the relation of the viscosities of the components, and the interphase tension. The system of dif-
ferential equations obtained adequately describes the actual processes of flow of molten polymer blends in transition
from a wide reservoir to a narrow one.

NOTATION

a
.  ⁄ a, rate of strain of an ellipsoid; a, b, a0, and b0, semiaxes of an ellipsoid in strained and unstrained states;

dav, dmin, and dmax, microfiber diameter (average, minimum, and maximum ones), µm; dij, components of the rate ten-
sor of uniaxial tension strain; G, elastic modulus of the dispersed phase; h, height of the molten-blend layer, m; h0,
initial height of the molten blend, m; ni, internal parameter characterizing the dispersion microstructure; n

.
i, time de-

rivative of the orientation vector ni; nk, nm, ni, vector coordinates; q = a/b and q0 = a0
 ⁄ b0, strains; R0, initial radius

of a droplet, µm; t, time, sec; u, intensity of uniaxial-tension flow; V, velocity of descent of the upper layer of the
molten blend, m/sec; Vz, Vx, and Vy, components of the velocity V in the direction of flow and in perpendicular direc-
tions respectively, m/sec; γαβ, interphase tension at the boundary of the phases α and β, mN/m; η, viscosity of the
dispersed phase, Pa⋅sec; θ, angle between the direction of flow and the ellipsoid’s axis of rotation, rad; λ1, λ2, and
λ3, rheological parameters of the system; µ, viscosity of the dispersion medium, Pa⋅sec; ϕ, angle between the Ox axis
and the projection of the axis of rotation of an ellipsoidal particle onto the area Oxy, rad; Φ, volume concentration of
the dispersed phase, vol. %. Subscripts: av, average; max, maximum; min, minimum; 0, initial (starting); α and β,
polymers of the dispersed phase and the dispersion medium; x, y, and z, coordinate axes; pom, polyoxymethylene;
evac, ethylene-vinyl acetate copolymer.
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